Топ-100 | Обзор | Комменты | Новости | RSS RSS | Поиск | Хочу! | Добавить ссылки | О сайте | FAQ | Профиль
RapidLinks - Скачай всё!
  


Modeling Spatio-Temporal Data: Markov Random Fields

Modeling Spatio-Temporal Data: Markov Random Fields



КнигиКниги Рейтинг публикации: 0 (голосов: 0)  
https://i124.fastpic.org/big/2024/1027/25/f5f5c7a5302536c1e0ba7d286e6a5d25.jpg
pdf | 27.23 MB | English| Isbn: 9781040217245 | Author: Marco A. R. Ferreira (Editor) | Year: 2024

Description :
Several important topics in spatial and spatio-temporal statistics developed in the last 15 years have not received enough attention in textbooks. Modeling Spatio-Temporal Data: Markov Random Fields, Objectives Bayes, and Multiscale Models aims to fill this gap by providing an overview of a variety of recently proposed approaches for the analysis of spatial and spatio-temporal datasets, including proper Gaussian Markov random fields, dynamic multiscale spatio-temporal models, and objective priors for spatial and spatio-temporal models. The goal is to make these approaches more accessible to practitioners, and to stimulate additional research in these important areas of spatial and spatio-temporal statistics.
Key topics:

[*]Proper Gaussian Markov random fields and their uses as building blocks for spatio-temporal models and multiscale models.
[*]Hierarchical models with intrinsic conditional autoregressive priors for spatial random effects, including reference priors, results on fast computations, and objective Bayes model selection.
[*]Objective priors for state-space models and a new approximate reference prior for a spatio-temporal model with dynamic spatio-temporal random effects.
[*]Spatio-temporal models based on proper Gaussian Markov random fields for Poisson observations.
[*]Dynamic multiscale spatio-temporal thresholding for spatial clustering and data compression.
[*]Multiscale spatio-temporal assimilation of computer model output and monitoring station data.
[*]Dynamic multiscale heteroscedastic multivariate spatio-temporal models.
[*]The M-open multiple optima paradox and some of its practical implications for multiscale modeling.
[*]Ensembles of dynamic multiscale spatio-temporal models for smooth spatio-temporal processes.

The audience for this book are practitioners, researchers, and graduate students in statistics, data science, machine learning, and related fields. Prerequisites for this book are master's-level courses on statistical inference, linear models, and Bayesian statistics. This book can be used as a textbook for a special topics course on spatial and spatio-temporal statistics, as well as supplementary material for graduate courses on spatial and spatio-temporal modeling.

https://ddownload.com/34kusr9vw6ib
  • Добавлено: 27/10/2024
  • Автор: 0dayhome
  • Просмотрено: 0
Ссылки: (для качалок)
Общий размер публикации: 27,24 МБ
Еще Книги: (похожие ссылки)


Написать комментарий