2023 Numpy, Pandas And Matplotlib AZ™: For Machine Learning |
|||||
|
|
https://i125.fastpic.org/big/2025/0706/93/9fbb472af1a46e9a162226f166b0f993.jpg
2023 Numpy, Pandas And Matplotlib A-Z™: For Machine Learning Last updated 1/2023 MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz Language: English | Size: 4.30 GB | Duration: 11h 43m Python NumPy, Pandas, and Matplotlib for Data Analysis, Data Science and Machine Learning. Pre-machine learning Analysis What you'll learn Go from absolute beginner to become a confident Python NumPy, Pandas and Matplotlib user Dare to get the most out of Python NumPy, Pandas and Matplotlib Go deeper to understand complex topics in Python NumPy, Pandas and data visualisation Learn Python NumPy, Pandas and Matplotlib through several exercises and solutions Acquire the required Python NumPy, Pandas and Matplotlib knowledge you need to excel in Data Science, Machine Learning, Ai and Deep Learning Be trained by expert Requirements Just a little knowledge of Python Description Welcome to NumPy, Pandas and Matplotlib A-Z™: for Machine LearningNumPy is a leading scientific computing library in Python while Pandas is for data manipulation and analysis. Also, learn to use Matplotlib for data visualization. Whether you are trying to go into Data Science, dive into machine learning, or deep learning, NumPy and Pandas are the top Modules in Python you should understand to make the journey smooth for you. In this course, we are going to start from the basics of Python NumPy and Pandas to the advanced NumPy and Pandas. This course will give you a solid understanding of NumPy, Pandas, and their functions.At the end of the course, you should be able to write complex arrays for real-life projects, manipulate and analyze real-world data using Pandas.WHO IS THIS COURSE FOR? √ This course is for you if you want to learn NumPy, Pandas, and Matplotlib for the first time or get a deeper knowledge of NumPy and Pandas to increase your productivity with deep and Machine learning.√ This course is for you if you are coming from other programming languages and want to learn Python NumPy and Pandas fast and know it really well.√ This course is for you if you are tired of NumPy, Pandas, and Matplotlib courses that are too brief, too simple, or too complicated.√ This course is for you if you want to build real-world applications using NumPy or Panda and visualize them with Matplotlib.√ This course is for you if you have to get the prerequisite knowledge to understanding Data Science and Machine Learning using NumPy and Pandas.√ This course is for you if you want to master the in-and-out of NumPy, Pandas, and data visualization.√ This course is for you if you want to learn NumPy and Pandas by doing exciting real-life challenges that will distinguish you from the crowd.√ This course is for you if plan to pass an interview soon. Overview Section 1: NumPy - Setups Lecture 1 Course Syllabus Walkthrough Lecture 2 Installing Jupiter Notebook Lecture 3 Installing of NumPy Lecture 4 Importing NumPy Section 2: NumPy - Introduction Lecture 5 What is NumPy Lecture 6 What is Arrray Lecture 7 Types of Array Lecture 8 What is Dimension Lecture 9 Exploring - Row Before Column - Why? Lecture 10 Identifying an Array Lecture 11 Scalar vs Vector vs Matrix vs Tensor Section 3: NumPy - Creating Arrays Lecture 12 First Time Creating an Array Lecture 13 Creating an Array from a Tuple Lecture 14 Creating a Zero Dimensional Array Lecture 15 Avoiding Errors of "Multiple Arguments" Lecture 16 Creating a 1-D Array Lecture 17 Creating a 2-D Array Lecture 18 Creating a 3-D Array Section 4: NumPy - Data Type Lecture 19 Understanding NumPy Data Type Lecture 20 Forcing a Data Type of an Array Section 5: NumPy - Challenges and Solution - Creating Arrays Lecture 21 The Challenges Lecture 22 The Challenges - text Lecture 23 Solution to Challenge 1a Lecture 24 Solution to Challenge 1b Lecture 25 Solution to Challenge 1c Lecture 26 Solution to Challenge 1d Lecture 27 Solution to Challenge 1e Lecture 28 Solution to Challenge 2a Lecture 29 Solution to Challenge 2b Lecture 30 Solution to Challenge 2c Lecture 31 Solution to Challenge 2d Lecture 32 Solution to Challenge 2e Lecture 33 Solution to Challenge 2f Section 6: NumPy - Creating Arrays - (Others) Lecture 34 Array of Zeros Lecture 35 Arrays of Ones Lecture 36 Empty Arrays Lecture 37 How to use arange() Lecture 38 How to use linspace() Lecture 39 How to use reshape() Section 7: NumPy - Attributes of an Array Lecture 40 How to find the attributes of an Array - (ndim, shape, size, dtype, itemsize) Section 8: NumPy - Challenges and Solutions - Creating Arrays (More) Lecture 41 The Challenges Lecture 42 The Challenges - Text Lecture 43 Solution to Challenge 1a Lecture 44 Solution to Challenge 1b Lecture 45 Solution to Challenge 1c Lecture 46 Solution to Challenge 2a Lecture 47 Solution to Challenge 2b Lecture 48 Solution to Challenge 2c Lecture 49 Solution to Challenge 2d Lecture 50 Solution to Challenge 2e Lecture 51 Solution to Challenge 2f Lecture 52 Solution to Challenge #3 Lecture 53 Solution to Challenge #4 Section 9: NumPy - Array Sorting and Concatenation Lecture 54 Array Sorting Lecture 55 Array Concatenation Section 10: NumPy - 1-D Array Indexing and Slicing Lecture 56 Understanding how indexing and Slicing work on 1-D Arrays Section 11: NumPy - Challenges and Solution - 1-D Array Indexing & Slicing Lecture 57 The Challenges Lecture 58 The Challenges - Text Lecture 59 Solution to Challenge 1a Lecture 60 Solution to Challenge 1b Lecture 61 Solution to Challenge 1c Lecture 62 Solution to Challenge 1d Lecture 63 Solution to Challenge 1e Lecture 64 Solution to Challenge 1f Lecture 65 Solution to Challenge 1g Lecture 66 Solution to Challenge 1h Lecture 67 Solution to Challenge 1i Lecture 68 Solution to Challenge 1j Lecture 69 Solution to Challenge 1k Lecture 70 Solution to Challenge 1l Lecture 71 Solution to Challenge 1m Section 12: NumPy - Creating an Array from Existing Array Lecture 72 With Less Than, Greater Than or Equal To Lecture 73 Even and Odd Numbers Lecture 74 Two Conditions Section 13: NumPy - Challenges and Solutions - Creating an Array from Existing Array Lecture 75 The Challenges Lecture 76 The Challenges - Text Lecture 77 Solution to Challenge #1 Lecture 78 Solution to Challenge #2 Lecture 79 Solution to Challenge #3 Lecture 80 Solution to Challenge #4 Lecture 81 Solution to Challenge #5 Section 14: NumPy - 2-D Array Indexing and Slicing Lecture 82 Selecting Elements of 2-D Array Lecture 83 Slicing In 2-D Array Section 15: NumPy - Challenges and Solution - 2-D Array Indexing & Slicing Lecture 84 The Challenges Lecture 85 The Challenges - Text Lecture 86 Solution to Challenge #1 Lecture 87 Solution to Challenge #2 Lecture 88 Solution to Challenge #3 Lecture 89 Solution to Challenge #4 Lecture 90 Solution to Challenge #5 Lecture 91 Solution to Challenge #6 Lecture 92 Solution to Challenge #7 Section 16: NumPy - 3D Indexing and Slicing Lecture 93 Selecting Elements of 3-D Array Lecture 94 Slicing a 3-D Array Lecture 95 More on Slicing Section 17: NumPy - Challenges and Solution - 3-D Array Indexing & Slicing Lecture 96 The Challenges Lecture 97 The Challenges - Text Lecture 98 Solution to Challenge #1 Lecture 99 Solution to Challenge #2 Lecture 100 Solution to Challenge #3 Lecture 101 Solution to Challenge #4 Lecture 102 Solution to Challenge #5 Lecture 103 Solution to Challenge #6 Lecture 104 Solution to Challenge #7 Lecture 105 Solution to Challenge #8 Lecture 106 Solution to Challenge #9 Lecture 107 Solution to Challenge #10 Lecture 108 Solution to Challenge #11 Lecture 109 Solution to Challenge #12 Lecture 110 Solution to Challenge #13 Lecture 111 Solution to Challenge #14 Lecture 112 Solution to Challenge #15 Lecture 113 Solution to Challenge #16 Lecture 114 Solution to Challenge #17 Section 18: NumPy - Summary - Selecting Element From Any n-D Array Lecture 115 Summary on Selecting Element From any Dimensional Array Section 19: NumPy - Array Flatten and Ravel Lecture 116 Understanding Array Flatten and Ravel Section 20: NumPy - Transpose Lecture 117 Understanding Array Transpose Section 21: NumPy - Reverse Lecture 118 Understanding How to Reverse an Array Lecture 119 Understanding How to Reverse Along an Axis Section 22: NumPy - Unique Array Lecture 120 Creating a Unique Array Lecture 121 Indexing a Unique Array Section 23: NumPy - Maximum, Minimum and Sum of an Array Lecture 122 Minimum, Maximum & Sum Lecture 123 Minimum, Maximum and Sum Along an Axis Section 24: NumPy - Stacking Lecture 124 Array Stacking Section 25: NumPy - Splitting an Array Lecture 125 Splitting an Array Lecture 126 Splitting an Array on a Specific Column Section 26: NumPy - Copying an Array Lecture 127 Understand how to Copy an Array Lecture 128 Understand how to Copy an Array II Section 27: NumPy - Array Operators Lecture 129 Understanding Array Operators Section 28: NumPy - Deleting Elements Lecture 130 How to delete Array Element I Lecture 131 How to delete Array Element II Lecture 132 Challenge & Solution I Lecture 133 Challenge & Solution II Lecture 134 Challenge & Solution III Lecture 135 Challenge & Solution III - Code Lecture 136 Challenge Yourself Lecture 137 Solution - Challenge Yourself Section 29: NumPy - Appending and Inserting Elements Into an Array Lecture 138 How to append & Insert an Element Into An Array Lecture 139 How to append & Insert Elements Into An Array Section 30: NumPy - Newaxis Lecture 140 Understanding Newaxis Section 31: NumPy - Trigonometric Function Lecture 141 Understanding NumPy Trigonometric Function Lecture 142 Understanding NumPy Trigonometric Function Section 32: NumPy - Searching Array Lecture 143 Understanding How to Search an Array Section 33: NumPy - Array Multiplication Lecture 144 Array Multiplication by a Single Number Lecture 145 Understanding dot() Lecture 146 Challenge & Solution Section 34: NumPy - Trace Lecture 147 Understanding Trace Lecture 148 Challenge & Solution Section 35: NumPy - Outer Product Lecture 149 Understanding Outer Product Lecture 150 Challenge & Solution Section 36: NumPy - Inner Product Lecture 151 Understanding Inner Product Section 37: NumPy - Cross Product Lecture 152 Understanding Cross Product Lecture 153 Challenge & Solution - I Lecture 154 Challenge & Solution - II Section 38: NumPy - Kronecker Product Lecture 155 Understanding Kronecker Product Section 39: NumPy - Determinant Lecture 156 Understanding Determinant Lecture 157 Challenge & Solution - 2 by 2 Lecture 158 Challenge & Solution - 3 by 3 Section 40: NumPy - Inverse of Array Lecture 159 Understanding Inverse of Array Lecture 160 Challenge & Solution Section 41: NumPy - Condition Number Lecture 161 Understanding the Condition Number Section 42: NumPy - Random Sub-Module Lecture 162 Random Number (Integer) Lecture 163 Random Number (Float) Lecture 164 Random Arrays Lecture 165 Random Choice Lecture 166 Choice with 2-D and 3-D Array Section 43: NumPy - Seed Lecture 167 Understanding Random Seed Lecture 168 Random Seed With Choice() Section 44: NumPy - Data Distribution Lecture 169 What is Data Distribution? Lecture 170 What is Random Distribution? Lecture 171 Random Distribution 2-D and 3-D Array Section 45: NumPy - Data Visualisation Lecture 172 NumPy vs MatPlotLib vs Seaborn Lecture 173 Installation of MatPlotLib and Seaborn Lecture 174 Challenge & Solution 1 Lecture 175 Challenge & Solution II Section 46: NumPy - Normal Distribution & Visualisation Lecture 176 What is Normal Distribution Lecture 177 Normal Distribution Visualisation Section 47: NumPy - Binomial Distribution Lecture 178 Binomial Distribution Lecture 179 Binomial Data Visualisation Section 48: Pandas - Intro, Installation & DataFrame Lecture 180 Pandas Introduction Lecture 181 Pandas Installation & Import Lecture 182 Pandas DataFrame Section 49: Resources Used for Pandas Lecture 183 Happiness Data Set Lecture 184 Sales Data Set Lecture 185 Northwind Database Lecture 186 Cities Data Set Section 50: Pandas - Series Lecture 187 Understanding Pandas Series Section 51: Pandas - Label Lecture 188 Understanding Pandas Label Lecture 189 Creating Series From Dictionary Section 52: Pandas - DataFrame Lecture 190 Introduction to DataFrame in Pandas Lecture 191 Loc Lecture 192 Challenge & Solution Section 53: Pandas - Concatenation Lecture 193 Pandas - Understanding Concat in Pandas Lecture 194 Pandas - Understanding Concat in Pandas - Code Lecture 195 Pandas - Adding Hierarchy Lecture 196 Pandas - Adding Hierarchy - Code Lecture 197 Pandas - Concat Label Lecture 198 Pandas - Concat Label - Code Lecture 199 Pandas - Challenge & Solution Lecture 200 Pandas - Challenge & Solution - Code Lecture 201 Pandas - Concat Columns of Different Sizes Lecture 202 Pandas - Concat Columns of Different Sizes - Code Lecture 203 Pandas - Concat along axis Lecture 204 Pandas - Concat along axis - Code Section 54: Pandas - Merge Lecture 205 Pandas - Understanding Merge Lecture 206 Pandas - Understanding Merge - Code Lecture 207 Pandas - Merging DataFrame of Different Sizes Lecture 208 Pandas - Merging DataFrame of Different Sizes - Code Lecture 209 Pandas - Inner, Outer, Left and Right Join Lecture 210 Pandas - Inner, Outer, Left and Right Join - Code Lecture 211 Pandas - Merge Suffix Lecture 212 Pandas - Merge Suffix - Code Section 55: Pandas - Load CSV Lecture 213 Load CSV in Pandas Section 56: Pandas - Aggregate & Statistics (Min, Max, Sum, Mean, Median, Mode, Summary) Lecture 214 Pandas - Minimum and Maximum Lecture 215 Pandas - Minimum and Maximum - Singapore Lecture 216 Pandas - Mean, Median & Mode Lecture 217 Pandas - Mean, Median & Mode - Mexico Lecture 218 Pandas - Sum Lecture 219 Challenge & Solution Lecture 220 Pandas - Statistical Summary Lecture 221 Pandas - Count Section 57: Pandas - JSON Lecture 222 Pandas - Load JSON Section 58: Pandas - Challenges & Solutions Lecture 223 1 - Pandas Challenge & Solution - Import Lecture 224 2 - Pandas Challenge & Solution - Data Set Inspection - Shape, DataType & Column Lecture 225 3 - Challenge & Solution - Skip Rows Reading CSV File Lecture 226 3 - Challenge & Solution - Skip Rows Reading CSV File - Code Lecture 227 4 - Challenge & Solution - Skip Rows Keep Headers Lecture 228 4 - Challenge & Solution - Skip Rows Keep Headers - Code Lecture 229 5 - Challenge & Solution - Read CSV Without Header Lecture 230 5 - Challenge & Solution - Read CSV Without Header - Code Lecture 231 6 - Challenge & Solution - Subset of Column Lecture 232 6 - Challenge & Solution - Subset of Column - Code Lecture 233 7 - Challenge & Solution - Few Rows Lecture 234 7 - Challenge & Solution - Few Rows - Code Lecture 235 8 - Challenge & Solution - Few Rows, Few Columns Lecture 236 8 - Challenge & Solution - Few Rows, Few Columns - Code Lecture 237 9 - Challenge & Solution - Time to Import Lecture 238 9 - Challenge & Solution - Time to Import- Code Lecture 239 10 - Challenge & Solution - Changing Data Type Lecture 240 10 - Challenge & Solution - Changing Data Type - Code Section 59: Pandas - Challenges & Solutions Lecture 241 Pandas - Summary of Data Set Lecture 242 Pandas - Summary of Data Set - Code Lecture 243 Pandas - Subset of Column Lecture 244 Pandas - Subset of Column - Code Lecture 245 Pandas - Total number of Columns and Rows Lecture 246 Pandas - Total number of Columns and Rows - Code Lecture 247 Pandas - Last Ten Rows Lecture 248 Pandas - Last Ten Rows - Code Section 60: Pandas - Challenges & Solutions Lecture 249 Pandas - Difference between Loc and iloc Lecture 250 Pandas - Difference between Loc and iloc - more Lecture 251 Pandas - Difference between head and tail Lecture 252 Pandas - Difference between head and tail - Code Lecture 253 Pan
Ссылки: (для качалок)
Общий размер публикации: 589,82 МБ
Еще Видео: (похожие ссылки)
|
||||

